Kuby Immunology, 7e: Chapter 5 Innate Immunity - Several barriers, both physical and chemical, exist to prevent pathogens from gaining access to deep tissues - Should those barriers be breached, innate immune system receptors recognize the threat - Conserved pathogen-associated molecular patterns (PAMPs) found on microbes - Aging, dead, or damaged self structures can also be recognized - Damage-associated molecular patterns (DAMPs) - Pattern recognition receptors (PRRs) recognize these structures and target them for clearance Figure 5-1 Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company Barriers are just one difference between innate and adaptive immune responses | Attribute | Innate immunity | Adaptive immunity | |-----------------------------|---|--| | Response time | Minutes/hours | Days | | Specificity | Specific for molecules and molecular patterns associated with pathogens and molecules produced by dead/damaged cells Highly specific; discriminates between minor differences in molecular structure microbial or nonmicrobial molecules | | | Diversity | A limited number of conserved, germ line-
encoded receptors | Highly diverse; a very large number of
receptors arising from genetic recombination
of receptor genes in each individual | | Memory responses | Some (observed in invertebrate innate responses and mouse/human NK cells) Persistent memory, with faster responses and mouse/human NK cells) | | | Self/nonself discrimination | Perfect; no microbe-specific self/nonself
patterns in host | Very good; occasional failures of
discrimination result in autoimmune disease | | Soluble components of blood | Many antimicrobial peptides, proteins, and
other mediators | Antibodies and cytokines | | Major cell types | Phagocytes (monocytes, macrophages,
neutrophils), natural killer (NK) cells, other
leukocytes, epithelial and endothelial cells | T cells, B cells, antigen-presenting cells | - Epithelial barriers prevent pathogen entry into the body's interior - Skin - Mucosal membranes | Organ or tissue | e Innate mechanisms protecting skin/epithelium | | |-------------------------------------|---|--| | Skin | Antimicrobial peptides, fatty acids in sebum | | | Mouth and upper
alimentary canal | Enzymes, antimicrobial peptides, and sweeping of
surface by directional flow of fluid toward stomach | | | Stomach | Low pH, digestive enzymes, antimicrobial peptides fluid flow toward intestine | | | Small intestine | Digestive enzymes, antimicrobial peptides, fluid flow to large intestine | | | Large intestine | Normal intestinal flora compete with invading
microbes, fluid/feces expelled from rectum | | | Airway and lungs | Cilia sweep mucus outward, coughing, sneezing
expel mucus, macrophages in alveoli of lungs | | | Urogenital tract | Flushing by urine, aggregation by urinary mucins;
low pH, anti-microbial peptides, proteins in vaginal
secretions | | | Salivary, lacrimal,
and mammary | Flushing by secretions; anti-microbial peptides and proteins in vaginal secretions | | Epithelial layers produce protective substances Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company - Acidic pH - Enzymes and binding proteins - Antimicrobial peptides | Proteins and peptides* | Location | Antimicrobial activities | |--|--|---| | Lysozyme | Mucosal/glandular secretions (e.g., tears, saliva, respiratory tract) | Cleaves glycosidic bonds of peptidoglycans in cell walls of bacteria, leading to lysis | | Lactoferrin | Mucosal/glandular secretions (e.g., milk,
intestine mucus, nasal/respiratory and
urogenital tracts) | Binds and sequesters iron, limiting growth of
bacteria and fungi; disrupts microbial membranes;
limits infectivity of some viruses | | Secretory leukocyte protease
inhibitor | Skin, mucosal/glandular secretions
(e.g., intestines, respiratory, and urogenital
tracts, milk) | Blocks epithelial infection by bacteria, fungi, viruses; antimicrobial | | S100 proteins, e.g.:
- psoriasin
- calprotectin | Skin, mucosal/glandular secretions
(e.g., tears, saliva/tongue, intestine, nasal/
respiratory and urogenital tracts) | Disrupts membranes, killing cells Binds and sequesters divalent cations (e.g., manganese and zinc), limiting growth of bacteria and fungi | | Defensins (α and β) | Skin, mucosal epithelia (e.g., mouth,
intestine, nasal/respiratory tract,
urogenital tract) | Disrupt membranes of bacteria, fungi, protozoan
parasites, and viruses; additional toxic effects
intracellularly; kill cells and disable viruses | | Cathelicidin (LL37)** | Mucosal epithelia (e.g., respiratory tract, urogenital tract) | Disrupts membranes of bacteria; additional toxic effects intracellularly; kills cells. | | Surfactant proteins SP-A, SP-D | Secretions of respiratory tract, other mucosal epithelia | Block bacterial surface components; promotes
phagocytosis | | proteins and peptides are produced co
produced constitutively in neutrophilis | nstitutively at these sites, but their production can also
and stored in granules. In addition, synthesis and secret
ses by various myeloid leukocyte populations (monocyt | r tissues; examples of prominent epithelial sites are listed. Most
be increased by microbial or inflammatory stimuli. Many are also
tion of many of these molecules may be induced by microbial com
es, macrophages, dendritic cells, and mast cells). | #### Phagocytosis Defined as engulfment and internalization of materials such as microbes for their clearance and Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company destruction Figure 5-Sa Kuby immunology, Seventh Edition © 2013 W. H. Freeman and Company ## Microbes are recognized by receptors on phagocytes May recognize PAMPs directly May recognize soluble opsonin protein bound to microbes Figure 5-6 Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company ## Phagocytosed microbed killed by multiple mechanisms - Ingested materials are taken into phagosomes - Phagosomes are fused with lysosomes or granules - Destruction occurs through enzyme degradation, antimicrobial proteins, and toxic effects of reactive oxygen and reactive nitrogen species (ROS and RNS) - Families of PRRs recognize a wide variety of PAMP ligands - TLRs - CLRs - RLRs - NLRs - Signaling pathways are activated, contributing to innate/inflammatory responses - Toll-like receptors (TLRs) recognize many types of pathogen molecules - Homologous to fruit fly Toll receptor Dimers with extracellular leucine-rich (LRR) domains that bind PAMPs and DAMPs - Of 13 TLRs in mice and humans, some are in lysosomes and some are surface bound - Location helps determine what each binds - TLR binding of PAMPs activates signaling pathways - Different TLRs recruit different adapter proteins to the TIR domain - Different adapter proteins lead to different events - Pathways include: - NF-κB transcription factor activation - Interferon regulating factor (IRF) pathways - MAP kinase pathway downstream transcription factors such as AP-1 ## TLR Signaling Pathways © 2013 W. H. Freeman and Company ## C-type lectin receptors (CLRs) Heterogeneous population of surface PRRs Recognize cell wall components Sugars/polysaccharides of bacteria/fungi Trigger a variety of pathways Some similar to those activated by TLRs - NOD-like receptors (NLRs) - Large family of cytosolic PRRs - Activated by intracellular PAMPs - Can also sense changes in intracellular environment - Activates caspase-1 protease - Caspase-1 cleaves IL-1/IL-18 into active forms for release - RIG-I-like receptors (RLRs) - RNA helicases - Function as cytosolic PRRs - Recognize viral double-stranded RNAs - Trigger signaling pathways that activate: - IRFs to trigger antiviral interferon responses - NF-κB transcription factor # PRR signaling pathways activate expression of a large variety of genes Antimicrobial peptides Type I interferons (potent antiviral activity) Cytokines (inflammatory IL-1, TNF-α, and IL-6) Chemokines Enzymes: iNOS and COX2 Figure 5-16 Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company ## Inflammatory responses - Proinflammatory cytokines and chemokines triggered by innate responses to infection, damage, or harmful substances - Early components of inflammation include: - Increased vascular permeability - Recruitment of neutrophils and other leukocytes from the blood to the site of damage/infection - Later stages of inflammation are the acute phase responses (APRs) - Induced by proinflammatory cytokines (IL-1, TNF-α, and IL-6) - APR involves:Increased synthesis/secretion of antimicrobial proteins from the liver (MBL,CRP,Complement components) - Liver acute phase proteins activate other processes that help eliminate pathogens #### Inflammatory responses Figure 5-17 Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company ### Natural killer (NK) cells - NK cells are lymphocytes with innate immune functions - Express a set of receptors for self proteins induced by: - Infections - Malignant transformations - Other stresses - Activated NK cells perform one of two functions: - Kill the altered self cell - Produce cytokines that induce adaptive responses against the altered self cell ## Regulation and evasion of innate and inflammatory responses - Regulation and control of these responses are important - Defects in PRRs and signaling pathways increase susceptibility to infections - Defects that allow the systems to remain abnormally "turned on" contribute to inflammatory disorders - These can be cases where more and more of a good thing ends up being unhealthy and damaging - Regulation includes both - Positive feedback mechanisms - Negative feedback mechanisms ## Regulation and evasion of innate and inflammatory responses Pathogens have evolved strategies to block, evade, and escape these responses | Type of evasion | Examples | |---|---| | Avoid detection by PRRs | Proteobacteria flagellin has a mutation that prevents it from being recognized by TLR5. | | | Helicobacter, Coxiella, and Legionella bacteria have altered LPS that is
not recognized by TLR4. | | | HTLV-1 virus p30 protein inhibits transcription and expression of TLR4 | | | Several viruses (Ebola, influenza, Vaccinia) encode proteins that bind cytosolic viral dsRNA and prevent it from binding and activating RLR. | | Block PRR signaling pathways, preventing
activation of responses | Vaccinia virus protein A46R and several bacterial proteins have TIR domains that block MyD88 and TRIF from binding to TLRs. | | | Several viruses block TBK1/IKK-activation of IRF3 and IRF7, required for IFN production. | | | West Nile Virus NS1 protein inhibits NF-κB and IRF transport into the nucleus. | | | Yersinia bacteria produce Yop proteins that inhibit inflammasome activity; the YopP protein inhibits transcription of the IL-1 gene. | | Prevent killing or replication inhibition | Salmonella and Listeria bacteria rupture the phagosome membrane
and escape to the cytosol. | | | Mycobacteria tuberculosis blocks phagosome fusion with lysosomes. | | | Vaccinia virus encodes a protein that binds to Type I IFNs and prevents them from binding to the IFN receptor. | | | Hepatitis C virus protein NS3-4A and Vaccinia virus protein E3L bind
protein kinase R and block IFN-mediated inhibition of protein synthesis | ## Interactions between the innate and adaptive immune systems - A constant interplay between the two systems exists - Several innate systems have been co-opted by adaptive immunity to contribute to antibody-mediated pathogen elimination - Opsonization - Complement activation - Some lymphocytes express TLRs, but use them as costimulatory receptors ## Dendritic cells are a key bridge •They bring antigens from the site of infection and present them to T cells in lymph nodes •This activates the T cells, allowing them to differentiate into particular pathogen-specific subsets for the best antigen clearance: T_H cell subsets,T_C cells